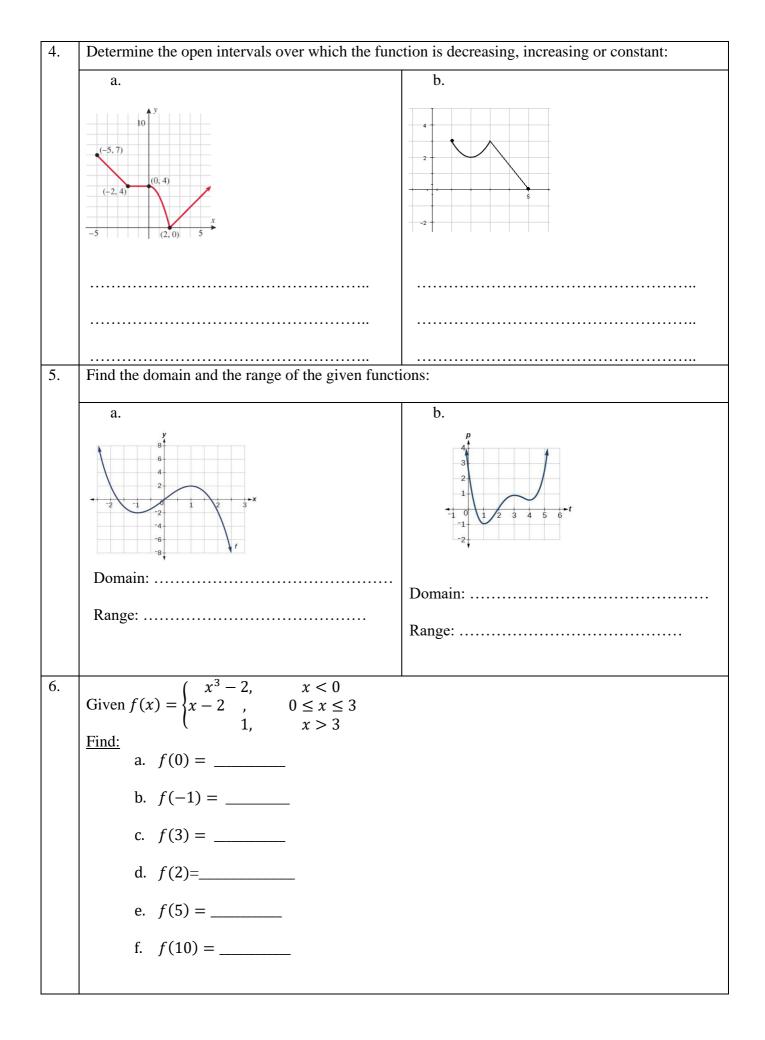


JEDDAH KNOWLEDGE INTERNATIONAL SCHOOL GRADE 11 PRECALCULUS


2020-2021

Name:

Section:

Fu	nctions							
1.		dentify the parent function and describe the transformation shown in the graph. Write an equation						
	of the graphed function.	2.						
		-1 -2 5 -2						
	I. Parent function:	I. Parent function:						
	II. Describe the transformation:	II. Describe the transformation:						
	III. The equation of the graphed function:	III. The equation of the graphed function:						
2.	Compar the graph of the function with	the graph of its parent function:						
	a. $y = x^2 + 1$	b. $y = x - 1 $						
	I. Parent function:	I. Parent function:						
	II. Description:	II. Description:						
	c. $y = 2x^2$	d. $y = -x^3$						
	I. Parent function:	I. Parent function:						
	II. Description:	II. Description:						
L	1							

Given the following functions. Find out $f(g(x))$ and $g(f(x))$.				
a. f(x) = 4x - 7 $g(x) = \frac{x + 7}{4}$	f(g(x)) =			
$g(x) = \frac{1}{4}$				
	g(f(x)) =			
What do you conclude?				
b. $f(x) = x^2 + 6, x \le 0$ $g(x) = \sqrt{x - 6}$	f(g(x)) =			
	g(f(x)) =			
What do you conclude?				

7.	Use the graph below to answer the following:	
	a) Estimate $f(1)$	
	b) Estimate the x – <i>intercepts</i> .	
	b) Estimate the $x - thter cepts$.	4
		-4 -3 -2 -1 0 1 2 3 4
		-8
	c) List the $y - intercept$.	-12
	d) Does the function formers to be even or odd or neither?	
	d) Does the function <i>f</i> appear to be even or odd or neither?	
	e) Estimate the intervals where f is increasing	
	f) Estimate the intervals where f is decreasing	
	i) Estimate the intervals where j is decreasing	
	g) Find the relative minimum and maximum points.	
	h) Estimate the domain and range of <i>f</i> .	
8.	Find the domain of the function $f(x) = \sqrt{x-5}$ algebraically.	

9.	Graph the following piecewise function.							
	$f(x) = \begin{cases} 2, & x \le 0\\ x+2, & 0 < x \le 3\\ x^2-4, & x > 3 \end{cases}$							
10.	For the fun	tion $f($	$x) = 3x^3$	³ + 1 det	ermine w	hether th	e functio	on is even, odd or neither using :
	Algebraicall	У		Grapl	hically			Numerically
Exp	ponential	functi	ions					
11.		out a calo n the tabl		ubstitute	each giv	en <u>x</u> valu	e below	into the equation: $f(x) = 2^x$.
	x y	-2	-1	0	1	2	3	4
	c. <u>Using</u> same <u>Dom</u> <u>Rang</u>	oordinate g a graph e set of ax <u>ain:</u> ge:	e plane be <u>ling calcu</u> kes above	elow: . <mark>lator</mark> , dra . Label y	aw the gr our grap	aph of <i>e^x</i> hs accorc	on the lingly	s a horizontal line.
	 d. Explain with use of calculations why the graph f(x) = 1^x is a horizontal line. e. Name two types of real-world applications for the use of exponential equations. 							
	e. Namo	e two typ	~s 01 1ca	1-w011 u 8	фрисано	115 101 110		

12.		stment with a bank that offers 5% <u>compound interest</u> per month. This is a fixed such that he will only be able to withdraw the money after 5 years. SAR at the beginning.				
	a. For how many months investment gain intere	st?	b.	Write a suitable mat describe the scenari		
	c. Use your formula to calculate the total amount that Ali will have in this account at the end of 5 years.			d. How much of this total money is <u>interest</u> earned?		
13.	A computer scientist genera <u>exponential rate</u> every <u>week</u> . many people should theoretic	If initially 4 people	are rep	ported to have the viru	is during week 1, how	
	Answer:					
14.	Fill in the table below:	Exponential form	Ι	Logarithmic form		
		$6^2 = 36$ $5^3 = 125$				
		5 - 125	I	$Log_3 81 = 4$		
				$Log_{11}\frac{1}{121} = -2$		
15.	Find the inverse of			- 121		
	a. $f(x) = log_2 x$.		b	$f(x) = 5^x.$		

16.			f(x) = lo each graph			on the same set of axes, using the coordinate
			is shifted 3	units up ar	nd 4 units	to the left, what will be the new equation for the
17.	function		lator chan	the base	in each o	uestion below and fill in the table:
17.		logarith	base 10	base e	Answer	
		m Log ₂ 64		$\frac{\ln 64}{\ln 2}$	6	
			$\frac{\log_{10}625}{\log_{10}5}$			
				$\frac{\ln 343}{\ln 7}$	4	_
	Use you	r imaginati	on!		4	
18.	Solv	e the follow	wing:			
	a. 3	^{3x} = 243		b.	$4(2^{3x-2})$ -	c. $e^{2x} + 4e - 12 = 0$
	Sequ	iences:				
19.	What are	e the next fo	our terms of	the arithm	etic seque	ence 10, 13, 16, ?
20.			h arithmetic	series.		
	a. ∑	$\sum_{j=1}^{7} (4-j)$				b. $\sum_{f=11}^{15} (4-f)$

	-
21.	Find a_1 in a geometric series for which $S_n = 3045$, $r = \frac{2}{5}$ and $a_n = 120$.
22.	AREA The square shown has a side length of $x + y$. The area must therefore be $(x + y)^2 = x^2 + xy + xy + y^2$. Each of these four terms corresponds to a different part of the area. Place each term in the corresponding region of the square.
23.	The length of each side of this cube is $x + y$ units.Expand $(x + y)^3$
24	Make a picture similar to the one used in Exercise 1 for the cube. For the three-dimensional cube, it helps to make a blow-up version of the drawing.
24.	Create a spreadsheet like the one below and enter the first three terms of a sequence. Find the first
	ten terms of the sequence. Then find the sum of the first ten terms of the series.
	Highlight cells B2 through D2 and move your cursor to any corner of the highlighted cells until a black cross appears. Drag across the row and release it at cell K2. The next values in the sequence will appear in the cells.
	To find the sum of the first 10 terms in the series, highlight the cells containing the terms, then click the \sum symbol on the toolbar. The sum will appear in the next cell. Note that this will work for arithmetic series only. The sum of the first ten terms of this series is 7.5.

1						
	Activity:					
	 a. Create a spreadsheet like the one in the example above. Record the initial sequence as -4, -1, and 2. Repeat the process you followed in the example. What are the next six numbers in the sequence? 					
	b. Describe the steps the spreads	heet program completes to t	find the next term in the sequence			
	c. Use the spreadsheet to find the	e value for the 16th term in	the sequence			
	d. Find the sum of the 3rd throug	the sequences in the sequences the sequences of the seque	ce.			
25.	Activity : continued fractions:					
	The fraction below is an example of a c fraction has a numerator of 1.	ontinued fraction. Note that	each fraction in the continued			
	Change $\frac{25}{11}$ into a continued fraction for	ollow the				
	steps:	Step 1	$\frac{25}{11} = \frac{22}{11} + \frac{3}{11} = 2 + \frac{3}{11}$			
	$\frac{25}{11} = 2 + \frac{1}{3 + \frac{1}{1}}$	Step 2				
		Step 3	$\frac{11}{2} = \frac{3}{2} + \frac{2}{2} = \frac{3}{2} + \frac{2}{2}$			
	$1 + \frac{1}{2}$	Step 4	$\frac{\frac{3}{11} = \frac{1}{\frac{11}{3}}}{\frac{3}{3} = \frac{9}{3} + \frac{2}{3} = 3 + \frac{2}{3}}$ $\frac{\frac{2}{3} = \frac{1}{\frac{3}{2}}}{\frac{2}{3} = \frac{1}{\frac{3}{2}}}$ $\frac{\frac{3}{2} = \frac{2}{2} + \frac{1}{2} = 1 + \frac{1}{2}$			
			$3 \frac{3}{2}$			
		Step 5	$\frac{3}{2} = \frac{2}{2} + \frac{1}{2} = 1 + \frac{1}{2}$			
	Now try:					
	a. $\frac{75}{31}$	b. $\frac{29}{8}$				

	Polynomials:						
26.	5. State for each graph the following information:						
	a.) Leading Coeffici		b.) Highest Deg	ree. <mark>(even/odd)</mark> .			
_	J			Ц			
				\square			
		ĺ	J				
27	W	Ч		\bigcup			
27.	Fill in the required informa	tion.					
			Value of H.D.	Value of L.C.	End Behaviors		
	1.) $f(x) = 3x^3 - 2x^2$	$x^{2} + 5x^{4} - x$					
	2.) $g(x) = -x^3 + 2x$	² – 5					
	3.) $y = 2x - 5x^2 + 7$	7					
	4.) $y = -5x + 8$					_	
	5.) $3y = 2x - 8x^2$						
	6.) $\frac{f(x)}{2} = 3x^2 - x + $	5					

	$0 = x^{3} - x^{2} - 2x$ $0 = x(x^{2} - x - 2)$ $0 = x(x^{2} - x - 2)$	frite original function. abstitute 0 for $f(x)$, emove common onomial factor. actor completely.	x = 0, x = 2, Use the zero or root verify these zeros.	e x-intercepts and $(-1, 0)$ 15. So, the real zeros of f are and $x = -1$. feature of a graphing utility to 4 $(0, 0)$ (0, 0) (0, 0)
28.	a. (2 x ⁴ + 8 x ³ + 7 x ² - 4 x - 4	4)	b. (9 x ⁵ + 27 x ⁴	- 212 x ³ - 708 x ² - 96 x - 320)
	C. $(x^4 - 9x^3 - 5x^2 + 225x - 5)$		d. (x ³ - 4 x ² + x	x - 4)
	Rational Functions	and Asympt	totes	
	$N \rightarrow Numerator Highest$	<u> </u>		
	D→Denominator Highest Holes	Degree		
	This will occur when there is	a common factor	in your numerator	and denominator.
	N < D	Γ	V = D	N > D
	Vertical Asymptote Set denominator = 0 and soly for x	Vertical Asym <mark>Set denomination for x</mark>	nptote <mark>ator = 0 and solve</mark>	Vertical Asymptote Set denominator = 0 and solve for x
	Horizontal Asymptote y = 0	17	symptote ng Coefficient ng Coefficient	Horizontal Asymptote <mark>None</mark>
	Slant Asymptote <mark>None</mark>	Slant Asympt <mark>None</mark>	ote	Slant Asymptote Only if Degree in Numerator is greater than Degree in Denominator by 1

29.	Find the Vertical Asymptote, Horizontal Asymptote, Slant Asymptote (if any), Holes (if any) of each graph.						
	a. $f(x) = -\frac{4}{x^2 - 3x}$	b. $f(x) =$	$\frac{x-4}{-4x-16}$	c. $f(x) = \frac{x^3 - 9x}{3x^2 - 6x - 9}$			
30.	Divide the following polynomial	s either through	LONG DIVISIO	N <mark>OR</mark> SYNTHETIC.			
	a. $(4a^3 - 7a^2 - 11a + 5) \div (4a^3 - 7a^2 - 11a + 5)$	4a + 5)	b. $(6d^5 + 13d)$ $(2d^2 + d - 1)$				